

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OFCIVIL ENGINEERING

II Year – II Semester		L	Т	P	C
		3	0	0	3
STRENGTH OF MATERIALS - II					

Course Learning Objectives:

- To give concepts of Principal stresses and strains developed in cross section of the beams on the cross section and stresses on any inclined plane. To impart concepts of failures in the material considering differenttheories
- To give concepts of torsion and governing torsion equation, and there by calculate the power transmitted by shafts and springs and design the cross section when subjected to loading using different theories offailures.
- To classify columns and calculation of load carrying capacity and to assess stresses due to axial and lateral loads for different edge conditions and to calculate combined effect of direct and bending stresses on different engineeringstructures.
- Introduce the concept of unsymmetrical bending in beams Location of neutral axis Deflection of beams under unsymmetricalbending.

Course Outcomes:

Upon successful completion of this course,

- The student will be able to understand the basic concepts of Principal stresses developed in a member when it is subjected to stresses along different axes and design thesections.
- The student can asses stresses in different engineering applications like shafts, springs, columns and struts subjected to different loadingconditions

SYLLABUS:

UNIT- I Principal Stresses and Strains And Theories of Failures: Introduction – Stresses on an inclined section of a bar under axial loading – compound stresses – Normal and tangential stresses on an inclined plane for biaxial stresses – Two perpendicular normal stresses accompanied by a state of simple shear – Mohr's circle of stresses – Principal stresses and strains – Analytical and graphical solutions.

Theories of Failures: Introduction – Various Theories of failures like Maximum Principal stress theory – Maximum Principal strain theory – Maximum shear stress theory – Maximum strain energy theory – Maximum shear strain energy theory.

UNIT – II Torsion of Circular Shafts and Springs: Theory of pure torsion – Derivation of Torsion equations: $T/J = q/r = N\phi/L$ – Assumptions made in the theory of pure torsion – Torsional moment of resistance – Polar section modulus – Power transmitted by shafts – Combined bending and torsion and end thrust – Design of shafts according to theories of failure.

Springs: Introduction – Types of springs – deflection of close and open coiled helical springs under axial pull and axial couple – springs in series and parallel.

UNIT – III Columns and Struts: Introduction – Types of columns – Short, medium and long columns – Axially loaded compression members – Crushing load – Euler's theorem for long columns- assumptions- derivation of Euler's critical load formulae for various end conditions – Equivalent length of a column – slenderness ratio – Euler's critical stress – Limitations of Euler's theory – Rankine – Gordon formula – Long columns subjected to eccentric loading – Secant formula – Empirical formulae – Straight line formula – Prof. Perry's formula.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OFCIVIL ENGINEERING

UNIT – IV Direct and Bending Stresses: Stresses under the combined action of direct loading and B.M. Core of a section – determination of stresses in the case of chimneys, retaining walls and dams – conditions for stability – stresses due to direct loading and B.M. about both axis.

UNIT - V Unsymmetrical Bending and Shear Centre

Un-symmetrical Bending: Introduction – Centroidal principal axes of section – Graphical method for locating principal axes – Moments of inertia referred to any set of rectangular axes – Stresses in beams subjected to unsymmetrical bending – Principal axes

- Resolution of bending moment into two rectangular axes through the centroid - Location of neutral axis Deflection of beams under unsymmetrical bending.

Shear Centre: Introduction Shear center for symmetrical and unsymmetrical sections (channel, I, T and L sections)

TEXT BOOKS:

- 1. A Textbook of Strength of Materials, by R. K. Rajput, 7e (Mechanics of Solids) SI Units S. Chand & Co, NewDelhi
- 2. Strength of materials by R. K. Bansal, LakshmiPublications.

REFERENCES:

- 1. Mechanics of Materials- by R. C. Hibbler, Pearson publishers
- 2. Mechanics of Solids E P Popov, Prentice Hall.
- 3. Strength of Materials by B.S.Basavarajaiah and P. Mahadevappa, 3rd Edition, Universities Press,
- 4. Mechanics of Structures Vol I by H.J.Shah and S.B.Junnarkar, Charotar Publishing House Pvt. Ltd.